Saturday, March 24, 2012

Standalone Chapter in Latex

\makeatletter
\@ifundefined{standalonetrue}{\newif\ifstandalone}{}
\@ifundefined{section}{\standalonetrue}{\standalonefalse}
\makeatother
\ifstandalone
\documentclass{scrartcl}
\usepackage{german}
\usepackage[ansinew]{inputenc}
\usepackage{makeidx}\makeindex
\usepackage{hyperref}
\begin{document}
\fi

Hier kommt Text.
Im übrigen schmeckt Schnitzelmitkartoffelsalat total lecker.

%Dokumentende
\ifstandalone
%Bei direkter Übersetzung sollte gleich noch das Literaturverzeichnis rein.
\bibliographystyle{alpha}
\bibliography{Bib}
\else
\expandafter\endinput
\fi
\end{document}

Set Legend in Matlab

figure(2)%%
plot(AoA,Cd_1514,'r-o',AoA,Cd_0012,'b-*',AoA,Cd_0014','g-v')
title('Drag Coefficient Comparison, R_e = 0.2 \times 10^6')
xlabel('Angle of Attack (deg)')
ylabel('Drag Coefficient')
lgnd = legend('NACA-1514','NACA-0012','NACA-0014');
set(lgnd, 'Location','Northwest','Box','off')

Subfigure in Latex

Include the subfigure package

\usepackage{subfigure}

Adding sub-figures

\begin{figure}[ht]
\centering

\subfigure[Subfigure 1 caption]{
   \includegraphics[scale =1] {subfigure1.eps}
   \label{fig:subfig1}
 }

 \subfigure[Subfigure 2 caption]{
   \includegraphics[scale =1] {subfigure2.eps}
   \label{fig:subfig2}
 }

 \subfigure[Subfigure 3 caption]{
   \includegraphics[scale =1] {subfigure3.eps}
   \label{fig:subfig3}
 }


\label{myfigure}
\caption{Global figure caption}
\end{figure}


Referring to sub-figures

In the text, you can refer to subfigures as follows \ref{fig:subfig1}, \ref{fig:subfig2} \ref{fig:subfig3}.

Tuesday, March 20, 2012

数学公式的英语读法 (ZT)

数学公式的英语读法 (ZT)

1.Logic
there exist
for all
pp implies q / if p, then q
pp if and only if q /p is equivalent to q / p and q are equivalent
2.Sets
xx belongs to A / x is an element (or a member) of A
xx does not belong to A / x is not an element (or a member) of A
AA is contained in B / A is a subset of B
AA contains B / B is a subset of A
AA cap B / A meet B / A intersection B
AA cup B / A join B / A union B
A\B A minus B / the diference between A and B
A×B A cross B / the cartesian product of A and B
3. Real numbers
x+1 x plus one
x-1 x minus one
x±1 x plus or minus one
xy xy / x multiplied by y
(x-y)(x+y) x minus y, x plus y
the equals sign
x=5 x equals 5 / x is equal to 5
x≠5 x (is) not equal to 5
xx is equivalent to (or identical with) y
x>y x is greater than y
x≥y x is greater than or equal to y
x<y x is less than y
x≤y x is less than or equal to y
0<x<1 zero is less than x is less than 1
0≤x≤1 zero is less than or equal to x is less than or equal to 1
|x| mod x / modulus x
xx squared / x (raised) to the power 2
xx cubed
x4 x to the fourth / x to the power 4
xn x to the nth / x to the power n
x (−n) x to the (power) minus n
x的平方根(square) root x / the square root of x
x的三次根cube root (of) x
x的四次根fourth root (of) x
xn次根nth root (of) x
(x+y)2 x plus y all squared
n! n factorial
x^x hat
x¯ x bar
x˜ x tilde
xi xi / x subscript i / x suffix i / x sub i
∑(i=1~n) ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai
4. Linear algebra
xthe norm (or modulus) of x
OAOA / vector OA
OA¯ OA / the length of the segment OA
AT A transpose / the transpose of A
A−1 A inverse / the inverse of A
5. Functions
f(x) fx / f of x / the function f of x
f:Sa function f from S to T
xx maps to y / x is sent (or mapped) to y
f’(x) f prime x / f dash x / the (first) derivative of f with respect to x
f”(x) f double-prime x / f double-dash x / the second derivative of f with respect to x
f”’(x) triple-prime x / f triple-dash x / the third derivative of f with respect to x
f (4) (x) f four x / the fourth derivative of f with respect to x
∂f/∂x1 the partial (derivative) of f with respect to x1
2f/∂x12 the second partial (derivative) of f with respect to x1
0 the integral from zero to infinity
limx0the limit as x approaches zero
limx0+the limit as x approaches zero from above
limx0−the limit as x approaches zero from below
logelog y to the base e / log to the base e of y / natural log (of) y
lnlog y to the base e / log to the base e of y / natural log (of) y