\makeatletter \@ifundefined{standalonetrue}{\newif\ifstandalone}{} \@ifundefined{section}{\standalonetrue}{\standalonefalse} \makeatother \ifstandalone \documentclass{scrartcl} \usepackage{german} \usepackage[ansinew]{inputenc} \usepackage{makeidx}\makeindex \usepackage{hyperref} \begin{document} \fi Hier kommt Text. Im übrigen schmeckt Schnitzelmitkartoffelsalat total lecker. %Dokumentende \ifstandalone %Bei direkter Übersetzung sollte gleich noch das Literaturverzeichnis rein. \bibliographystyle{alpha} \bibliography{Bib} \else \expandafter\endinput \fi \end{document}
To Log Everything I find useful. If you find anything inappropriate, please contact cuijinqiang@gmail.com
Saturday, March 24, 2012
Standalone Chapter in Latex
Set Legend in Matlab
figure(2)%%
plot(AoA,Cd_1514,'r-o',AoA,Cd_0012,'b-*',AoA,Cd_0014','g-v')
title('Drag Coefficient Comparison, R_e = 0.2 \times 10^6')
xlabel('Angle of Attack (deg)')
ylabel('Drag Coefficient')
lgnd = legend('NACA-1514','NACA-0012','NACA-0014');
set(lgnd, 'Location','Northwest','Box','off')
plot(AoA,Cd_1514,'r-o',AoA,Cd_0012,'b-*',AoA,Cd_0014','g-v')
title('Drag Coefficient Comparison, R_e = 0.2 \times 10^6')
xlabel('Angle of Attack (deg)')
ylabel('Drag Coefficient')
lgnd = legend('NACA-1514','NACA-0012','NACA-0014');
set(lgnd, 'Location','Northwest','Box','off')
Subfigure in Latex
Include the subfigure package
\usepackage{subfigure}
Adding sub-figures
\begin{figure}[ht] \centering \subfigure[Subfigure 1 caption]{ \includegraphics[scale =1] {subfigure1.eps} \label{fig:subfig1} } \subfigure[Subfigure 2 caption]{ \includegraphics[scale =1] {subfigure2.eps} \label{fig:subfig2} } \subfigure[Subfigure 3 caption]{ \includegraphics[scale =1] {subfigure3.eps} \label{fig:subfig3} } \label{myfigure} \caption{Global figure caption} \end{figure}
Referring to sub-figures
In the text, you can refer to subfigures as follows \ref{fig:subfig1}, \ref{fig:subfig2} \ref{fig:subfig3}.
Tuesday, March 20, 2012
数学公式的英语读法 (ZT)
数学公式的英语读法 (ZT)
1.Logic
∃there exist
∀for all
p⇒q p implies q / if p, then q
p⇔q p if and only if q /p is equivalent to q / p and q are equivalent
2.Sets
x∈A x belongs to A / x is an element (or a member) of A
x∉A x does not belong to A / x is not an element (or a member) of A
A⊂B A is contained in B / A is a subset of B
A⊃B A contains B / B is a subset of A
A∩B A cap B / A meet B / A intersection B
A∪B A cup B / A join B / A union B
A\B A minus B / the diference between A and B
A×B A cross B / the cartesian product of A and B
3. Real numbers
x+1 x plus one
x-1 x minus one
x±1 x plus or minus one
xy xy / x multiplied by y
(x-y)(x+y) x minus y, x plus y
= the equals sign
x=5 x equals 5 / x is equal to 5
x≠5 x (is) not equal to 5
x≡y x is equivalent to (or identical with) y
x>y x is greater than y
x≥y x is greater than or equal to y
x<y x is less than y
x≤y x is less than or equal to y
0<x<1 zero is less than x is less than 1
0≤x≤1 zero is less than or equal to x is less than or equal to 1
|x| mod x / modulus x
x2 x squared / x (raised) to the power 2
x3 x cubed
x4 x to the fourth / x to the power 4
xn x to the nth / x to the power n
x (−n) x to the (power) minus n
x的平方根(square) root x / the square root of x
x的三次根cube root (of) x
x的四次根fourth root (of) x
x的n次根nth root (of) x
(x+y)2 x plus y all squared
n! n factorial
x^x hat
x¯ x bar
x˜ x tilde
xi xi / x subscript i / x suffix i / x sub i
∑(i=1~n) ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai
4. Linear algebra
‖x‖the norm (or modulus) of x
OA→OA / vector OA
OA¯ OA / the length of the segment OA
AT A transpose / the transpose of A
A−1 A inverse / the inverse of A
5. Functions
f(x) fx / f of x / the function f of x
f:S→T a function f from S to T
x→y x maps to y / x is sent (or mapped) to y
f’(x) f prime x / f dash x / the (first) derivative of f with respect to x
f”(x) f double-prime x / f double-dash x / the second derivative of f with respect to x
f”’(x) triple-prime x / f triple-dash x / the third derivative of f with respect to x
f (4) (x) f four x / the fourth derivative of f with respect to x
∂f/∂x1 the partial (derivative) of f with respect to x1
∂2f/∂x12 the second partial (derivative) of f with respect to x1
∫0∞ the integral from zero to infinity
limx→0the limit as x approaches zero
limx→0+the limit as x approaches zero from above
limx→0−the limit as x approaches zero from below
logey log y to the base e / log to the base e of y / natural log (of) y
lny log y to the base e / log to the base e of y / natural log (of) y
Subscribe to:
Posts (Atom)