plot(xini(1),xini(2),'ko','MarkerSize',10, 'MarkerFaceColor',[0,0,0])
plot(tgt(1),tgt(2),'rd','MarkerSize',10, 'MarkerFaceColor',[1,0,0])
To Log Everything I find useful. If you find anything inappropriate, please contact cuijinqiang@gmail.com
h1 = plot(rand(1,10)); % Blue line hold on; h2 = plot(rand(1,10),'r'); % Red line h3 = plot(rand(1,10),'g'); % Green line legend([h1 h3],{'hello','world'}); % Only the blue and green lines appear % in the legend
sudo apt-get update sudo apt-get purge flglrx sudo reboot
sudo apt-get install gdm sudo service gdm restart
#include <iostream> | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <vector> | |
#include "opencv2\opencv.hpp" | |
#include <opencv2\nonfree\features2d.hpp> | |
using namespace std; | |
using namespace cv; | |
void useSurfDetector(Mat img_1, Mat img_2, vector<DMatch> good_matches); | |
void useBriskDetector(Mat img_1, Mat img_2, vector<DMatch> good_matches); | |
int main() | |
{ | |
Mat img_1, img_2; | |
//image = imread("lena.jpg",1); | |
img_1= imread("img1.ppm", CV_LOAD_IMAGE_GRAYSCALE ); | |
img_2= imread("img12.jpg",CV_LOAD_IMAGE_GRAYSCALE ); | |
if(img_1.empty()||img_2.empty()) | |
{ | |
cout << "Could not open or find the image" << std::endl ; | |
return -1; | |
} | |
vector<DMatch> good_matches ; | |
useSurfDetector(img_1, img_2, good_matches); | |
useBriskDetector(img_1, img_2, good_matches); | |
// imwrite("Lena SURF Matches.jpg",img_matches); | |
waitKey(0); | |
return 0; | |
} | |
void useSurfDetector(Mat img_1, Mat img_2, vector<DMatch> good_matches) | |
{ | |
good_matches.clear(); | |
double t = (double)getTickCount(); | |
vector<KeyPoint> keypoints_1, keypoints_2; | |
Mat descriptor_1, descriptor_2; | |
int minHessian = 400; | |
SurfFeatureDetector detector(minHessian); | |
// Step -1, Detect keypoints using SURF detector | |
detector.detect(img_1, keypoints_1); | |
detector.detect(img_2, keypoints_2); | |
// Step -2, Calculate descriptors (feature vector) | |
SurfDescriptorExtractor extractor; | |
extractor.compute(img_1,keypoints_1,descriptor_1); | |
extractor.compute(img_2,keypoints_2,descriptor_2); | |
//step - 3, Matching descriptor vectors with a brute force mathcher | |
BFMatcher matcher(NORM_L2); | |
vector<DMatch> matches; | |
matcher.match(descriptor_1, descriptor_2,matches); | |
// quick calcualation of max and min distances between keypoints | |
t = ((double)getTickCount() - t)/getTickFrequency(); | |
double max_dist=0; double min_dist = 1000; | |
for (int i =0; i < descriptor_1.rows;i++) | |
{ | |
double dist = matches[i].distance; | |
if(max_dist<dist) max_dist = dist; | |
if(min_dist>dist) min_dist = dist; | |
} | |
cout << "SURF " << endl; | |
cout << " max dist " << max_dist << endl; | |
cout <<" max dist " << min_dist << endl; | |
cout << " SURF Time (senconds): " << t<<endl; | |
for (int i=0;i<descriptor_1.rows;i++) | |
{ | |
if( matches[i].distance<3*min_dist) | |
good_matches.push_back(matches[i]); | |
} | |
// Draw Good Matches | |
Mat img_goodmatches; | |
drawMatches(img_1,keypoints_1,img_2,keypoints_2,good_matches,img_goodmatches,Scalar::all(-1),Scalar::all(-1),vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); | |
imshow( "Good Matches SURF", img_goodmatches ); | |
/* for( int i = 0; i < good_matches.size(); i++ ) | |
{ | |
printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); | |
}*/ | |
}; | |
void useBriskDetector(Mat img_1, Mat img_2, vector<DMatch> good_matches) | |
{ | |
good_matches.clear(); | |
double t = (double)getTickCount(); | |
vector<KeyPoint> keypoints_1, keypoints_2; | |
Mat descriptor_1, descriptor_2; | |
int Thresh = 60; | |
int Octave = 4; | |
float PatternScales=1.0f; | |
cv::BRISK briskDetector(Thresh, Octave,PatternScales); | |
briskDetector.create("Feature2D.BRISK"); | |
// Step -1, Detect keypoints using SURF detector | |
briskDetector.detect(img_1, keypoints_1); | |
briskDetector.detect(img_2, keypoints_2); | |
// Step -2, Calculate descriptors (feature vector) | |
briskDetector.compute(img_1,keypoints_1,descriptor_1); | |
briskDetector.compute(img_2,keypoints_2,descriptor_2); | |
//step - 3, Matching descriptor vectors with a brute force mathcher | |
BFMatcher matcher(NORM_HAMMING); | |
vector<DMatch> matches; | |
matcher.match(descriptor_1, descriptor_2,matches); | |
t = ((double)getTickCount() - t)/getTickFrequency(); | |
// quick calcualation of max and min distances between keypoints | |
double max_dist=0; double min_dist = 1000; | |
for (int i =0; i < descriptor_1.rows;i++) | |
{ | |
double dist = matches[i].distance; | |
if(max_dist<dist) max_dist = dist; | |
if(min_dist>dist) min_dist = dist; | |
} | |
cout << "BRISK " << endl; | |
cout << " max dist " << max_dist << endl; | |
cout <<" max dist " << min_dist << endl; | |
cout << " Brisk Time (senconds): " << t<<endl; | |
min_dist = min_dist + (max_dist- min_dist)* 0.3; | |
for (int i=0;i<descriptor_1.rows;i++) | |
{ | |
if( matches[i].distance< min_dist) | |
good_matches.push_back(matches[i]); | |
} | |
// Draw Good Matches | |
Mat img_goodmatches; | |
drawMatches(img_1,keypoints_1,img_2,keypoints_2,good_matches,img_goodmatches,Scalar::all(-1),Scalar::all(-1),vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); | |
imshow( "Good Matches BRISK", img_goodmatches ); | |
/* for( int i = 0; i < good_matches.size(); i++ ) | |
{ | |
printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); | |
}*/ | |
} |
Parameters: |
|
---|
#include "opencv.hpp" | |
#include <iostream> | |
#include <string> | |
using namespace std; | |
using namespace cv; | |
vector<cv::Point2f> Generate2DPoints(); | |
vector<cv::Point3f> Generate3DPoints(); | |
int main() | |
{ | |
vector<cv::Point2f> imagePoints = Generate2DPoints(); | |
vector<cv::Point3f> objectPoints = Generate3DPoints(); | |
cout << "there are " << imagePoints.size() << " Image points and " << objectPoints.size() << " Object points" << endl; | |
Mat cameraMatrix(3,3, DataType<double>::type); | |
setIdentity(cameraMatrix); | |
cout<< " Camera matrix " <<endl<< cameraMatrix << endl; | |
Mat distCoeffs(4,1,DataType<double>::type); | |
distCoeffs.at<double>(0) = 0; | |
distCoeffs.at<double>(1) = 0; | |
distCoeffs.at<double>(2) = 0; | |
distCoeffs.at<double>(3) = 0; | |
cout<< " Camera distorsion matrix " <<endl<< distCoeffs << endl; | |
Mat rvec(3,1,DataType<double>::type); | |
Mat tvec(3,1,DataType<double>::type); | |
cv::solvePnP(objectPoints, imagePoints,cameraMatrix, distCoeffs, rvec, tvec); | |
cout << " rvec: " << rvec << endl; | |
cout << " tvec: " << tvec << endl; | |
std::vector<cv::Point2f> projectedPoints; | |
cv::projectPoints(objectPoints, rvec, tvec, cameraMatrix,distCoeffs, projectedPoints); | |
for(unsigned int i =0; i < projectedPoints.size(); i++) | |
{ | |
cout << "Image Points : " << imagePoints[i] << "projected to " << projectedPoints[i] <<endl; | |
} | |
waitKey(); | |
return 0; | |
} | |
std::vector<cv::Point2f> Generate2DPoints() | |
{ | |
std::vector<cv::Point2f> points; | |
float x,y; | |
x=282;y=274; | |
points.push_back(cv::Point2f(x,y)); | |
x=397;y=227; | |
points.push_back(cv::Point2f(x,y)); | |
x=577;y=271; | |
points.push_back(cv::Point2f(x,y)); | |
x=462;y=318; | |
points.push_back(cv::Point2f(x,y)); | |
x=270;y=479; | |
points.push_back(cv::Point2f(x,y)); | |
x=450;y=523; | |
points.push_back(cv::Point2f(x,y)); | |
x=566;y=475; | |
points.push_back(cv::Point2f(x,y)); | |
for(unsigned int i = 0; i < points.size(); ++i) | |
{ | |
std::cout << points[i] << std::endl; | |
} | |
return points; | |
} | |
std::vector<cv::Point3f> Generate3DPoints() | |
{ | |
std::vector<cv::Point3f> points; | |
float x,y,z; | |
x=.5;y=.5;z=-.5; | |
points.push_back(cv::Point3f(x,y,z)); | |
x=.5;y=.5;z=.5; | |
points.push_back(cv::Point3f(x,y,z)); | |
x=-.5;y=.5;z=.5; | |
points.push_back(cv::Point3f(x,y,z)); | |
x=-.5;y=.5;z=-.5; | |
points.push_back(cv::Point3f(x,y,z)); | |
x=.5;y=-.5;z=-.5; | |
points.push_back(cv::Point3f(x,y,z)); | |
x=-.5;y=-.5;z=-.5; | |
points.push_back(cv::Point3f(x,y,z)); | |
x=-.5;y=-.5;z=.5; | |
points.push_back(cv::Point3f(x,y,z)); | |
for(unsigned int i = 0; i < points.size(); ++i) | |
{ | |
std::cout << points[i] << std::endl; | |
} | |
return points; | |
} |