Reference in Convex optimization
- Stephen Boyd and Lieven Vandenberghe, Convex optimization (book in pdf)
- EE364a: Convex Optimization I and EE364b: Convex Optimization II, Stanford course homepages
- 6.253: Convex Analysis and Optimization, an MIT OCW course homepage
- Brian Borchers, An overview of software for convex optimization
Examples
The following problems are all convex minimization problems, or can be transformed into convex minimizations problems via a change of variables:
- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratically constrained Convex-quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming
- Semidefinite programming
- Entropy maximization with appropriate constraints
Methods
Convex minimization problems can be solved by the following contemporary methods:[4]
- "Bundle methods" (Wolfe, Lemaréchal, Kiwiel), and
- Subgradient projection methods (Polyak),
- Interior-point methods (Nemirovskii and Nesterov).
Other methods of interest:
- Cutting-plane methods
- Ellipsoid method
- Subgradient method
- Dual subgradients and the drift-plus-penalty method
Subgradient methods can be implemented simply and so are widely used.[5] Dual subgradient methods are subgradient methods applied to a dual problem. The drift-plus-penalty method is similar to the dual subgradient method, but takes a time average of the primal variables.
No comments:
Post a Comment