Friday, May 3, 2013

OpenCV: Surf Matching in Video Sequence

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "opencv2\opencv.hpp"
#include <opencv2\nonfree\features2d.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat img_1, img_2;
//image = imread("lena.jpg",1);
//img_1= imread("C:/Users/JimWei/Documents/Visual Studio 2010/Projects/FeatureExtractionOpenCV/FeatureExtractionOpenCV/PCB.jpg", CV_LOAD_IMAGE_GRAYSCALE );
img_1= imread("PCB.jpg", CV_LOAD_IMAGE_GRAYSCALE );
if(img_1.empty())
{
cout << "Could not open or find the first image" << std::endl ;
return -1;
}
resize(img_1,img_1,Size(0,0),0.15,0.15,INTER_LINEAR);
imshow("Image 1", img_1);
VideoCapture capture(0);
if (!capture.isOpened())
{
cerr<<" Could not create capture";
return -1;
}
while(true)
{
capture>>img_2;
cvtColor(img_2,img_2,CV_RGB2GRAY);
resize(img_2,img_2,Size(0,0),0.5,0.5,INTER_LINEAR);
imshow("VideoSequence",img_2);
//resize(img_2,img_2,Size(0,0),0.2,0.2,INTER_LINEAR);
// Step -1, Detect keypoints using SURF detector
int minHessian = 100;
SurfFeatureDetector detector(minHessian);
vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect(img_1, keypoints_1);
detector.detect(img_2, keypoints_2);
// Step -2, Calculate descriptors (feature vector)
SurfDescriptorExtractor extractor;
Mat descriptor_1, descriptor_2;
extractor.compute(img_1,keypoints_1,descriptor_1);
extractor.compute(img_2,keypoints_2,descriptor_2);
// maches with Flann Based Matching.
double t = (double)getTickCount();
FlannBasedMatcher matcher2;
vector<DMatch> matches2;
matcher2.match(descriptor_1,descriptor_2,matches2);
t = ((double)getTickCount() - t)/getTickFrequency();
cout << " Flann Based Matching Time (senconds): " << t<<endl;
// quick calcualation of max and min distances between keypoints
double max_dist=0; double min_dist = 100;
for (int i =0; i < descriptor_1.rows;i++)
{
double dist = matches2[i].distance;
if(max_dist<dist) max_dist = dist;
if(min_dist>dist) min_dist = dist;
}
vector< DMatch> good_matches;
for (int i=0;i<descriptor_1.rows;i++)
{
if( matches2[i].distance<2*min_dist)
good_matches.push_back(matches2[i]);
}
// Draw Good Matches
Mat img_goodmatches;
drawMatches(img_1,keypoints_1,img_2,keypoints_2,good_matches,img_goodmatches,Scalar::all(-1),Scalar::all(-1),vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
vector<Point2f> obj;
vector<Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
obj.push_back(keypoints_1[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_2[good_matches[i].trainIdx].pt);
}
Mat H = findHomography( obj,scene,CV_RANSAC);
vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint(img_1.cols,0);
obj_corners[2] = cvPoint(img_1.cols,img_1.rows);
obj_corners[3] = cvPoint(0,img_1.rows);
std::vector<Point2f> scene_corners(4);
Mat img_object = img_1.clone();
perspectiveTransform( obj_corners, scene_corners, H);
Mat img_matches = img_goodmatches;
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
//-- Show detected matches
imshow( "Good Matches & Object detection", img_matches );
if(waitKey(1) == 27) break;
}
waitKey(0);
return 0;
}
view raw gistfile1.cpp hosted with ❤ by GitHub

No comments:

Post a Comment